THE CHINESE UNIVERSITY OF HONG KONG
 MATH3270B
 HOMEWORK2 SOLUTION

Question 1:

(1) The characteristic equation is $r^{2}+8 r-9=0$ i.e. $(r+9)(r-1)=0$, which has two roots $r_{1}=-9, r_{2}=1$. Hence, the general solution is $y=C_{1} e^{-9 t}+C_{2} e^{t}$, where C_{1} and C_{2} are constants.
(2) The characteristic equation is $r^{2}+4 r+4=0$ i.e. $(r+2)^{2}=0$, which has two same roots $r_{1}=r_{2}=-2$. Hence, the general solution is $y=\left(C_{1}+C_{2} t\right) e^{-2 t}$, where C_{1} and C_{2} are constants.
(3) The characteristic equation is $r^{2}+5 r+8=0$, which has two imagine roots $r_{1}=-\frac{5}{2}+\frac{\sqrt{7}}{2} i$, $r_{2}=-\frac{5}{2}-\frac{\sqrt{7}}{2} i$. Hence, the general solution is $y=e^{-\frac{5}{2} t}\left(C_{1} \sin \left(\frac{\sqrt{7}}{2} t\right)+C_{2} \cos \left(\frac{\sqrt{7}}{2} t\right)\right)$, where C_{1} and C_{2} are constants.

Question 2:

(1) For the second order O.D.E $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, suppose the O.D.E has two linearly independent solutions y_{1} and y_{2}, by the definition of Wronskian, we have $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-$ $y_{2} y_{1}^{\prime}$, we differentiate on the both sides and use the proposition that y_{1}, y_{2} are the solutions of the O.D.E, we get

$$
W^{\prime}(t)=y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}=-p(t) W(t)
$$

we solve this separable O.D.E(note that $W(t)$ is nonzero because the former O.D.E is second order), we get $W(t)=e^{-\int p(t)}$. Hence, if the Wronskian is constant, then we must have $p(t)=0$.
(2) By direct calculation, we have

$$
\begin{align*}
W(f g, f h) & =f g(f h)^{\prime}-f h(f g)^{\prime} \\
& =f g\left(f^{\prime} h+f h^{\prime}\right)-f h\left(f^{\prime} g+f g^{\prime}\right) \\
& =f^{2}\left(g h^{\prime}-h g^{\prime}\right) \tag{1}\\
& =f^{2} W(g, h) .
\end{align*}
$$

Question 3:

(1) Form 2.1, we know that the Wronskian satisfies an O.D.E, $W^{\prime}(x)=p(x) W(x)$, and we also deduce the formula that $W(x)=e^{-\int p(x)}$. Hence, in the question, $p(x)=\frac{1}{x}$, we get $W(x)=C / x$, where C is a nonzero constant.
(2) Similarly, in the equation, we have $p(x)=\frac{2 x}{x^{2}-1}$, hence we deduce that $W(x)=C /\left(x^{2}-1\right)$, where C is a nonzero constant.

Question 4:

(1) We consider the general case, if the second order O.D.E $a(t) y^{\prime \prime}+b(t) y^{\prime}+y=0$ has a known sol y_{1}. We assume $y_{2}=v(t) y_{1}$ is another independent sol, we differentiate y_{2} twice and substitute into the equation, we deduce that

$$
a(t)\left[v^{\prime \prime} y_{1}+v^{\prime} y_{1}^{\prime}\right]+b(t) v^{\prime} y_{1}+v\left(a(t) y_{1}^{\prime \prime}+b(t) y_{1}^{\prime}+y_{1}\right)=0,
$$

now since y_{1} is a sol, we deduce finally that v satisfies the O.D.E:

$$
a(t)\left[v^{\prime \prime} y_{1}+v^{\prime} y_{1}^{\prime}\right]+b(t) v^{\prime} y_{1}=0
$$

In question (1), we have

$$
t^{2}\left[v^{\prime \prime} t^{-1}-2 v^{\prime} t^{-2}\right]+3 t v^{\prime} t^{-1}=0
$$

i.e. $t v^{\prime \prime}+v^{\prime}=0$. Let $w=v^{\prime}$ and w satisfies $t w^{\prime}+w=0$. We solve this equation and deduce $w=\frac{c}{t}$, where c is a constant. Hence, $v=c \ln t+k$, where c and k are constants. Finally, $y_{2}=c t^{-1} \ln t+k t^{-1}$, since the second part is a multiple of y_{1} and can be dropped, but the first provides a new sol $y_{2}=t^{-1} \ln t$. One can check that the Wronskian of y_{1} and y_{2} is $W\left(y_{1}, y_{2}\right)=t^{-3}>0$. So $y_{2}=t^{-1} \ln t$ is a new independent sol.
(2) Form 4.1, we have in this equation, v satisfies the O.D.E:

$$
(x-1)\left[v^{\prime \prime} e^{x}+2 v^{\prime} e^{x}\right]-x v^{\prime} e^{x}=0,
$$

i.e. $(x-1) v^{\prime \prime}+(x-2) v^{\prime}=0$. We solve this differential equation and deduce that $v(x)=$ $c x e^{-x}+k$, where c and k are constants. Finally, $y_{2}=c x+k e^{x}$, we drop the second term and choose $y_{2}=x$. One can check that the Wroskian of y_{1} and y_{2} is $W\left(y_{1}, y_{2}\right)=(x-1) e^{x}>0$.

Question 5:

(1) We have already know:
the sol of inhomogeneous equation=the general sol of homogeneous equation+ a particular sol of the inhomogeneous equation.
In this question, the corresponding homogeneous equation is $y^{\prime \prime}+3 y^{\prime}+2 y=0$, we deduce
the general sol of homogeneous equation is $y=C_{1} e^{-t}+C_{2} e^{-2 t}$. Now we separate the inhomogeneous equation into three equations:

$$
\begin{gather*}
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}\left(t^{2}+1\right) \sin 2 t, \tag{2}\\
y^{\prime \prime}+3 y^{\prime}+2 y=3 e^{-t} \cos t, \tag{3}\\
y^{\prime \prime}+3 y^{\prime}+2 y=6 e^{t} \tag{4}
\end{gather*}
$$

Now if we find the particular sol of (2), (3), (4), denoted to be y_{1}, y_{2}, y_{3}, then $y^{*}=y_{1}+y_{2}+y_{3}$ is a particular sol of the ordinary equation. Since $1+2 i,-1+i, 1$ are not the roots of the characteristic equation of ordinary equation, we assume

$$
y^{*}=e^{t}\left[\sin 2 t\left(a_{2} t^{2}+a_{1} t+a_{0}\right)+\cos 2 t\left(b_{2} t^{2}+b_{1} t+b_{0}\right)\right]+e^{-t}\left(c_{0} \sin t+d_{0} \cos t\right)+f_{0} e^{t}
$$

we differentiate twice and substitute into the ordinary equation, finally to get $a_{2}=\frac{1}{52}$, $a_{1}=\frac{10}{169}, a_{0}=-\frac{1233}{35152}, b_{2}=-\frac{5}{52}, b_{1}=\frac{73}{676}, b_{0}=-\frac{4105}{35152}, c_{0}=-\frac{3}{2}, d_{0}=\frac{3}{2}, f_{0}=\frac{2}{3}$. Finally, the sol of inhomogeneous equation is $y=C_{1} e^{-t}+C_{2} e^{-2 t}+y^{*}$, where the y^{*} is given above.
(2) Similarly, the general sol of corresponding homogeneous equation is $y=e^{-t}\left(C_{1} \sin 2 t+\right.$ $\left.C_{2} \cos 2 t\right)$. Now since $-1+2 i$ is the root of the characteristic equation, $-2+i$ is not the root of the characteristic equation, we assume

$$
\left.y^{*}=t e^{-t}\left[\left(a_{1} t+a_{0}\right) \sin 2 t+\left(b_{1} t+b_{0}\right) \cos 2 t\right)\right]+e^{-2 t}\left[\left(c_{1} t+c_{0}\right) \sin t+\left(d_{1} t+d_{0}\right) \cos t\right],
$$

we differentiate twice and substitute into the ordinary equation, we deduce that $a_{1}=\frac{3}{8}$, $a_{0}=0, b_{1}=0, b_{0}=\frac{3}{16}, c_{1}=\frac{1}{5}, c_{0}=\frac{1}{25}, d_{1}=-\frac{2}{5}, d_{0}=-\frac{7}{25}$. Finally, the sol of inhomogeneous equation is $y=y=e^{-t}\left(C_{1} \sin 2 t+C_{2} \cos 2 t\right)+y^{*}$, where the y^{*} is given above.

